菜单
    犀牛云移动云网

基于国产泓川 LTC3000 光谱共焦传感器的手机相机镜头外观扫描测量案例

来源:
时间: 2025-08-30

一、案例背景与核心测试需求

手机相机镜头模组(以某型号 5P 光学镜头为例)的多镜片安装精度直接决定成像质量 —— 镜片间高度差过大会导致光路偏移,引发画面模糊、畸变;安装深度偏差超出阈值会改变焦距,影响自动对焦性能;镜筒与镜片的配合缝隙过大则易进灰、产生杂散光,甚至导致镜片松动。本案例针对该 5P 镜头模组的外观关键参数展开测量,具体需求如下:

镜片间高度差

:相邻镜片(如 1# 镜片与 2# 镜片、4#     镜片与 5# 镜片)的表面高度差≤5μm,全镜片组高度差累计偏差≤10μm

镜片安装深度

:镜筒基准面到各镜片表面的距离(设计值:1# 镜片 120μm3# 镜片 350μm5# 镜片     600μm),实际偏差需≤±3μm

配合缝隙

:镜筒内壁与镜片边缘的径向间隙需控制在 20~50μm,且圆周方向均匀性误差≤5μm

设备适配性

:镜头模组尺寸仅 φ8mm×12mm(镜筒外径 φ8mm),需传感器体积小巧(避免空间干涉),同时兼容透明材料(光学玻璃镜片,透光率 98%)与非透明材料(工程塑胶镜筒,反射率约 25%);

产线效率

:单次测量时间≤10 秒(量产需求),重复测量精度≤0.5μm(避免误判)。


经选型验证,国产泓川 LTC3000 光谱共焦传感器(外径 φ8mm、长度 38.7mm,静态重复精度 0.1μm,线性误差 <±0.6μm)完美匹配狭小空间安装需求,搭配 LT-CPS 高速控制器(Max.32kHz 采样频率)可兼顾精度与效率,成为核心测量设备。



二、测试设备与系统搭建

1. 核心设备清单

设备名称

型号 / 规格

作用说明

光谱共焦传感器

LTC3000(泓川科技)

核心测量单元,输出距离数据(量程 ±1500μm,覆盖镜片深度与缝隙范围)

高速控制器

LT-CPS(激光光源版)

32kHz 最高采样频率,同步控制传感器与运动平台,支持 EtherCAT 工业通信

高精度运动平台

XY 轴行程 20mm×20mm轴行程 10mm

带动样品实现环形 / 螺旋扫描,XY  轴重复定位精度 ±1μm ±0.3μm

真空样品固定台

吸附面积 φ10mm,吸附力  0.3MPa

无应力固定镜头模组,避免镜筒变形导致的测量偏差

光学定位辅助模块

显微视觉系统(放大倍率 200×

辅助校准传感器光斑与镜头中心对齐,定位精度 ±0.5μm

环境控制单元

温度 23±2℃,湿度  35%~55%,无气流干扰

降低环境温湿度对 LTC3000 温度特性(<0.05% F.S./℃)的影响

2. 系统搭建逻辑

LTC3000 通过 FC/PC 光纤连接 LT-CPS 控制器,控制器与运动平台、视觉模块通过 EtherCAT 总线实现毫秒级同步;镜头模组通过真空台吸附在运动平台中心,LTC3000 固定于 Z 轴微调支架(初始距离按 “测量中心距离 7mm” 校准),确保光斑垂直入射镜头中心(测量角度 <±3°,远低于 LTC3000  ±14° 允许范围),避免角度偏差导致的距离计算误差。

三、测量原理与技术适配性

1. 光谱共焦核心原理(针对镜头模组特性)

LTC3000 通过 “白光色散 + 共焦滤波” 实现多材料精准测量:

白光经色散透镜分解为不同波长单色光,其中短波长(蓝光)聚焦于近距表面(如 1# 镜片表面),长波长(红光)聚焦于远距表面(如 5# 镜片表面或镜筒底部);
反射光经共焦小孔滤波后,仅 “聚焦点波长” 被光谱仪捕捉     ——透明镜片会产生 “表面反射峰(短波长)”  “底面反射峰(长波长)非透明镜筒仅产生 “表面反射峰(单一波长)

LT-CPS 

控制器通过预校准的 “波长 - 距离” 曲线(纳米级激光干涉仪标定,线性误差 <±0.6μm),将波长信号转换为精确距离值,分辨率达 0.02μm

2. 镜头模组多参数测量适配性

测量参数

材料类型

反射信号特征

测量逻辑

镜片高度差

透明光学玻璃

相邻镜片各有 “双反射峰,表面峰波长不同

计算同一径向位置下,相邻镜片表面峰的距离差值

镜片安装深度

透明玻璃 + 非透明镜筒

镜筒基准面(单峰)镜片表面(双峰中短波长峰)

镜筒基准面距离 - 镜片表面距离  = 安装深度

配合缝隙

透明玻璃 + 非透明镜筒

镜筒内壁(单峰)镜片边缘(双峰)

定位两者边缘坐标,计算径向距离差


四、详细扫描步骤(兼顾精度与产线效率)

1. 测试前校准(关键基准统一)

1)传感器线性校准

用纳米级激光干涉仪(精度 ±0.05μm)在 LTC3000 量程 ±1500μm 内取 30 个校准点,拟合 “波长 - 距离” 曲线,确保全量程内线性误差 <±0.6μm—— 针对镜头常用的 “0~1000μm 深度范围,误差进一步控制在 ±0.3μm 内。

2)光斑与镜头中心对齐

通过显微视觉模块观察镜头模组,标记镜筒内壁圆心(X0,Y0);
移动 XY 轴使 LTC3000 光斑中心与(X0,Y0)重合,记录坐标;
采集镜筒基准面距离值 H0=7.000mmLTC3000 中心距离),作为后续深度计算基准。

3)样品基准校准

采集镜筒顶部基准面 5 个点(圆周均匀分布)的距离平均值,设为 H_base=6.998mm(因镜筒加工误差,略低于中心距离 7mm),用于消除样品安装偏心导致的基准偏差。

2. 扫描路径规划(圆形镜头高效覆盖)

采用 “环形扫描 + 径向加密” 策略,避免冗余采样,单次扫描时间控制在 8 秒内:

扫描范围

:径向(R0~4mm(覆盖 φ8mm     镜筒全范围),圆周(θ0~360°

扫描步距

:径向步距 10μm光斑直径     20μm,避免漏扫),圆周步距 1°360 个采样环);

采样频率

:设置为 25kHz(低于 LT-CPS  32kHz 上限,平衡数据稳定性与效率);

总采样点

360 个环 × 400 个径向点(4mm/10μm= 144,000 个点,扫描时间 = 144,000 / 25,000 ≈ 5.76 秒。

3. 数据采集流程

运动平台从(X0,Y0)出发,按 “径向递增 10μm→圆周旋转 1°” 的环形路径移动;
每移动一个步距,LT-CPS 触发 LTC3000 采集 1 组数据,包含 “反射峰数量、峰波长、峰强度、当前坐标(R,θ
若为 “双反射峰(强度比 1:0.9,判定为透明镜片区域,记录表面峰波长 λ_s;若为 “单反射峰(强度 > 0.8V,判定为非透明镜筒区域,记录峰波长 λ_t
扫描结束后,将 “坐标(R,θ波长(λ” 数据转换为 “坐标(R,θ距离(H” 矩阵,存储为 CSV 格式。


五、核心测量算法设计(针对三大参数)

1. 数据预处理(降噪与去干扰)

1)降噪算法

采用 “5 点环形移动平均滤波”—— 对每个采样点(R,θ),用其相邻的(R-10μm,θ)、(R+10μm,θ)、(R,θ-1°)、(R,θ+1°)、(R,θ个点的距离平均值替代,消除产线微小振动导致的噪声(滤波前数据标准差 0.15μm,滤波后降至 0.04μm,接近 LTC3000 静态重复精度 0.1μm)。

2)异常值剔除

基于 3σ 准则,剔除距离值超出 “基准范围 ±10μm” 的异常点(多为镜头表面灰尘干扰,占比 < 0.05%),并用 “径向线性插值” 补全数据,避免缝隙测量空洞。

2. 三大核心参数计算算法

1)镜片间高度差算法

提取同一径向位置(如 R=1mm)、不同镜片层的表面距离值:设 1# 镜片表面距离为 H12# 镜片为 H25# 镜片为 H5
计算相邻镜片高度差:ΔH1-2=|H1-H2|ΔH2-3=|H2-H3|ΔH4-5=|H4-H5|
判定标准:所有 ΔH≤5μm,且累计偏差 ΔH_total=|H1-H5|≤10μm

2)镜片安装深度算法

提取镜筒基准面距离 H_base(非透明区域,单峰对应的距离);
计算各镜片安装深度:D1=H_base - H11# 镜片),D2=H1 - H22# 镜片,镜筒未覆盖,以 1# 镜片为基准),D5=H4     - H55# 镜片);
计算深度偏差:ΔD1=|D1 - D1 设计值 |D1 设计值 = 120μm),ΔD3=|D3 - 350μm|ΔD5=|D5 - 600μm|
判定标准:所有 ΔD≤3μm

3)配合缝隙算法(改进Canny 边缘检测)

对径向数据(固定 θ 0  4mm)进行梯度计算:G_R = [H (R+10μm,θ) - H     (R-10μm,θ)] / 20μm
设定梯度阈值 G_th=8μm/mm(镜筒与镜片边缘处梯度突变),当 G_R >     G_th 时,判定为 “镜片边缘R1);当 G_R < -G_th 时,判定为 “镜筒内壁边缘R2);
计算配合缝隙宽度:W=R2 - R1
圆周均匀性误差:σ_W=√[Σ(W_θ - W_avg)² / 360]W_θ 为每个 θ 角的缝隙宽度,W_avg 为平均值);
判定标准:20μm≤W_avg≤50μm,且 σ_W≤5μm


六、测试结果与数据分析(组样品,编号 L1~L3

1. 基础测量结果(设计指标:ΔH≤5μmΔD≤3μm20≤W≤50μmσ_W≤5μm

样品编号

镜片最大高度差 ΔH_maxμm

镜片最大深度偏差 ΔD_maxμm

配合缝隙平均值 W_avgμm

缝隙均匀性误差 σ_Wμm

合格判定

L1

4.2

2.1

38.5

3.2

合格

L2

3.8

1.7

42.3

2.8

合格

L3

5.1(超差)

2.9

35.7

4.1

不合格

2. 关键性能验证

1)重复精度验证

 L1 样品同一位置重复扫描 5 次,核心参数结果如下:

ΔH_max

4.2→4.1→4.3→4.2→4.2μm,平均值 = 4.2μm,标准差 = 0.08μm

ΔD_max

2.1→2.0→2.2→2.1→2.1μm,平均值 = 2.1μm,标准差 = 0.07μm
结果表明:重复精度远优于需求的≤0.5μm,满足量产一致性要求。

2)透明 / 非透明测量一致性

选取 L2 样品中 “镜片区域(透明)”  “镜筒区域(非透明)”  200 个点,测量距离值标准差:

透明镜片区域:标准差 = 0.09μm
非透明镜筒区域:标准差 = 0.07μm
两者差异 < 0.03μm,证明     LTC3000 对两种材料的测量稳定性一致,无系统偏差。

3)小尺寸传感器优势验证

对比 LTC3000φ8mm)与某竞品传感器(φ12mm)的安装适配性:

LTC3000

:可深入镜头模组周边元器件(如马达、排线)间隙(最小间隙 5mm),无干涉;
竞品传感器:因直径过大,需调整样品摆放角度,导致测量效率下降 30%,且易产生角度偏差;
验证了 LTC3000 小尺寸设计对手机微型模组的适配性。

3. 结果可视化输出

LT-CPS 配套 Studio 软件生成 3 类核心报告:

2D 环形灰度图

:用灰度值表示距离(亮区为高,暗区为低),直观显示镜片高度差与缝隙分布(L3 样品的 ΔH_max=5.1μm 处呈明显亮斑,标记为超差区域);

3D 镜头地形图

:还原镜筒、镜片的三维形貌,清晰呈现镜片安装倾斜(如     L3 样品 1# 镜片存在 0.5° 倾斜,导致 ΔH 超差);

参数统计报告

:输出每 1° 圆周的缝隙宽度、每片镜片的深度偏差,自动标记超差项(如 L3 样品的 ΔH_max=5.1μm,标注 “高度差超差)。

七、案例总结

本案例通过国产泓川 LTC3000 光谱共焦传感器的小尺寸(φ8×38.7mm)、高精度(0.1μm 重复精度)、多材料兼容性 LT-CPS 控制器的高速采样(32kHz,成功实现手机相机镜头模组 “高度差 - 深度 - 缝隙” 的一体化测量,核心价值如下:

精度达标

:测量误差 <±0.6μm,重复精度 < 0.1μm,可精准识别 5μm 级的高度差超差;

效率适配

:单次扫描耗时≤8 秒,满足量产线 “每小时检测 450 ” 的效率需求;

环境适应

IP67 防护等级可应对产线粉尘、少量油污环境,传感器寿命达 20000 小时以上;

国产化优势

:相比进口同类产品,成本降低 40%,且技术支持响应时间缩短至 24 小时内。

后续可优化方向:结合 AI 算法实现超差原因自动诊断(如 L3 样品高度差超差源于镜片倾斜,AI 可自动识别倾斜角度并反馈至组装工序),进一步提升产线智能化水平。


销售热线 0510-88155119
图文传真 0510-88152650
无锡泓川科技有限公司 Copyright © 2018 20160829.All Rights Reserved 犀牛云提供企业云服务